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Abstract

In the last decade, cryptocurrencies continue to play a bigger role in the finan-
cial markets. Its attractive return made retail investors and institutional players
consider allocating parts of their portfolio to the new type of asset. However, cryp-
tocurrencies often provide greater risk than traditional assets. This paper attempted
to model the Ethereum return series with five linear and nonlinear models with
the goal of forecasting future returns. The results show that the two-regime Self-
Exciting Threshold Autoregressive (SETAR) model with -0.04297 threshold has the
best forecasting performance with a MSE of 0.002956. This model also captures
several key characteristics of the return series.
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1 Introduction

Background. Blockchain technologies have been one of the largest trend in the last decade.
At its core, it is a “decentralized ledger of all transactions across a peer-to-peer network. Using
this technology, participants can confirm transactions without a need for a central clearing au-
thority” (PricewaterhouseCoopers, n.d.).

Advancements in this technology gave rise to cryptocurrencies - virtual currencies secured
by cryptography, making it virtually impossible to counterfeit or double-spend (Frankenfield,
2021a). Compared to traditional assets such as stocks and bonds, cryptocurrencies are generally
not issued by any central authority, making them theoretically immune to government interven-
tions.

As of January 2021, there are over 4,000 cryptocurrencies in existence (Conway, 2021). Popular
cryptocurrencies such as Bitcoin, Ethereum, and Dogecoin among others have presented attrac-
tive returns for investors and traders alike. Moreover, new developments have also been made
in the last decade including the increasingly popular play-to-earn NFT gaming wherein players
can earn real cash from playing games. As a result, retail investors as well as institutional play-
ers are now considering cryptocurrencies as an alternative to traditional assets and have even
considered cryptocurrencies as part of their portfolio.

Despite the attractive returns, investing in cryptocurrencies also comes with great risks. His-
torical data shows that compared to traditional assets, cryptocurrencies have greater risk and
volatility. One can lose more than 30% of a position in just a day. Investors in cryptocurrencies
can potentially lose their entire portfolio if proper risk management is not exercised.
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Problem. As cryptocurrencies continually play a bigger role in the financial markets, time
series analysis can be a useful tool to model the price actions and returns. Furthermore, it can
also give useful insights into risk management especially when dealing with a volatile assets.

One of the most popular cryptocurrency today is the Ethereum (ETH). It was launched in July
2015 by a small group of blockchain enthusiasts including the company’s current CEO Vita-
lik Buterin. As of May 2021, Ethereum’s market capitalization was estimated at $500 billion
compared to $1.080 trillion for Bitcoin (Frankenfield, 2021b). As one of the highly traded cryp-
tocurrency, it captures the high volatility present in the cryptocurrency market with a maximum
daily return of 41% and a minimum daily return of -130% since its inception.

This paper aimed to utilize five linear and nonlinear time series models to predict future returns
of Ethereum. A comparison was made in terms of the forecasting performance, measured by the
mean squared error (MSE), of each model. It is hoped that with a better model for the returns,
investors can make informed decisions on risk management.

Related Literature. The few literature available today explores the statistical characteris-
tics of cryptocurrencies. However, most of these studies are focused on studying the prices and
returns of Bitcoin as it is the leading the cryptocurrency market.

Radovanov, Marcikić, and Gvozdenović (2018) explored the four major cryptocurrencies: Bit-
coin (BTC), Ethereum (ETH), Ripple (XRP) and Litecoin (LTC). Using an AR(1) model with
GARCH(1, 1),GJRGARCH(1, 1),EGARCH(1, 1), they found that α+β ≈ 1 indicating the per-
sistence of volatility over time. Moreover, they also found that in the case of BTC and ETH,
there is only a small level of volatility asymmetry for daily returns while the models on XRP
and LTC revels a positive asymmetry which contradicts other financial time series.

Similarly, Naimy and Hayek (2018) attempted to model Bitcoin volatility using GARCH models.
They compared the GARCH(1, 1),EWMA,EGARCH(1, 1) models and found that the EGARCH
outperforms the other two models in both in-sample and out-sample performance. However, the
leverage coefficient γ was found to have a value 0.0113, a positive number contrary to what is
expected, indicating that positive shocks are slightly more destabilizing.

Furthermore, Udom (2019) also attempted to model Bitcoin returns and volatility with a ARMA-
GARCH model. The study found that ARIMA(2, 0, 1) − GARCH(1, 1) with normal distribu-
tion performs better compared to a pure ARIMA(2, 0, 1) model as well as ARIMA(2, 0, 1) −
GARCH(1, 1) model with t distribution and skewed t distribution. The researches obtained a
minimum RMSE of 0.0372 when the out-sample data was from February 1, 2018 to July 31, 2019.

Likewise, in Gyamerah (2019), the researcher found that the return series of Bitcoin are lep-
tokurtic. Additionally, the TGARCH model with a normal inverse Gaussian (NIG) distribution
was found to be the most appropriate model for estimating Bitcoin returns compared to the t
distribution and the generalized error distribution (GED).

Finally, Chappell (2018) applied the Markov regime-switching (MRS) models to Bitcoin returns.
The researcher studied six cases ofm-state MRS withm ∈ {2, · · · , 7}. In the 2-state MRS, it was
found that there is a presence of volatility clustering as indicated by the transition probability
matrix where there is a high probability to remain in the same state in the next interval.
However, the restricted 5-state model generated the optimal estimation for the sample in terms
of Goodness-of-Fit test.
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2 Methodology

This paper explored several linear and nonlinear time series models to be applied to the Ethereum
return series with the goal of identifying the best model to forecast the returns of the cryptocur-
rency. The information criterion (IC), mean absolute error (MAE), and mean squared error
(MSE) are the values investigated.

2.1 Linear Time Series Models

Augmented Dickey-Fuller Test. Before modeling the Ethereum return series using linear
models, we first check for unit root in the series. The primary test used is the Augmented Dickey-
Fuller (ADF) test. Suppose that

Xt = ct + βXt−1 +

p−1∑
i=1

ϕi∆Xt−i + at, (1)

where ∆Xj = Xj −Xj−1 and ct is a function of time. The ADF test has a t-statistic given by

ADF =
β̂ − 1

std(β̂)
, (2)

where H0 : non-stationary and H1 : stationary. Should the return series fail to reject the null
hypothesis, we perform differencing on it and perform the test again. Otherwise, we proceed
with fitting the series to the linear models.

ARMA-IGARCH Model. The first model to fit is the ARMA(p, q)-IGARCH(1, 1) model
which can be written as

rt = ϕ0 +

p∑
i=1

ϕirt−i + at −
q∑

j=1

θjat−j

at = σtϵt, σ2
t = α0 + β1σ

2
t−1 + α1a

2
t−1, (3)

where ϵt ∼ N(0, 1), t distribution, or generalized error distribution (GED), α1 = 1 − β1, and
0 < β1 < 1. This will be explored since it captures the persistence of volatility or past squared
shocks ηt = a2t − σ2

t in cryptocurrencies seen in Radovanov et al. (2018).

ARMA-EGARCHModel. The other linear model to fit is the ARMA(p, q)-EGARCH(1, 1)
model which accounts for the asymmetric (leverage) effects between positive and negative asset
returns as seen in Naimy and Hayek (2018), albeit with different results than traditional assets.
We consider the weighted innovation

g(ϵt) = θϵt + γ [|ϵt| − E(|ϵt|)] =

{
(θ + γ)ϵt − γE(|ϵt|), if ϵt ≥ 0

(θ − γ)ϵt − γE(|ϵt|), if ϵt < 0,
(4)

where θ, γ are some constants. The model can then be written as

rt = ϕ0 +

p∑
i=1

ϕirt−i + at −
q∑

j=1

θjat−j

at = σtϵt, ln(σ2
t ) = α0 + g(ϵt−1) + β1 ln(σ

2
t−1). (5)
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2.2 Nonlinear Time Series Models

F Test. To check for nonlinearity in the Ethereum return series, we use the F test by Tsay
(1986) which is considered an improvement to the Keenan’s test (1985) and the RESET test
(1969). In practice, the test is the partial F statistic for testing α = 0 in the linear least-square
regression

xt = X′
t−1ϕ+M ′

t−1α+ at, (6)

where Xt−1 = (1, xt−1, · · · , xt−p)
′, ϕ = (ϕ0, · · · , ϕp)

′, Mt−1 = vech(Xt−1X
′
t−1)

1.

Self-Exciting Threshold Autoregressive (SETAR) Model. As an improvement to
the linear AR(p) model, we investigated the k-regime SETAR model with threshold variable
xt−d. In its essence, the SETAR model is a piecewise linear AR model in the threshold space
which can be written as

xt = ϕ
(j)
0 + ϕ

(j)
1 xt−1 + · · ·+ ϕ(j)

p xt−p + a
(j)
t , if γj−1 < xt−1 < γj , (7)

where j ∈ {1, · · · , k} and γi ∈ R such that −∞ = γ0 < γ1 < · · · < γk−1 < γk = ∞. The

superscript (j) is used to indicate the regime, where {a(j)t } are iid with mean 0 and variance σ2
j

that are mutually independent for different j, and the γj are the thresholds. This model was
chosen due to its ability to capture the leverage effect (when the threshold value is set close to 0).
It also provides greater flexibility compared to linear models and can provide better estimates
of the conditional mean.

Logistic Smooth Transition Autoregressive (LSTAR) Model. A further improve-
ment to the SETAR model is the LSTAR model which addresses the discontinuity of the thresh-
olds in the SETAR model. It makes use of a logistic smooth function 0 ≤ F (·) ≤ 1 to produce
a weighted linear combination of two AR(p) models

µ1,t = c1 +

p∑
i=1

ϕ1,ixt−i

µ2,t = c2 +

p∑
i=1

ϕ2,ixt−i, (8)

The weights are determined by F

(
xt−1 −∆

s

)
with ∆, s as parameters representing the location

and scale of the model transition.

Markov Switching Autoregressive (MSA) Model. The last model we investigate is
the 2-regime MSA model where the transition is driven by a hidden two-state Markov chain.
The model can be written as

xt =


c1 +

p∑
i=1

ϕ1,ixt−i + a1,t, if st = 1

c2 +

p∑
i=1

ϕ2,ixt−i + a2,t, if st = 2,

(9)

where st is the state at time t that assumes values {1, 2} and is governed by a transition matrix
M which gives the probabilities of the next state given the current state. This model was chosen
since it captures the volatility clustering in Chappell (2018).

1If A = [ai,j ]k×k, then vech(A) = (a′
1, a

′
2∗, · · · , a′

k∗)
′, where a1 is the first column of A, and

ai∗ = (ai,i, · · · , ak,i) is a (k − i+ 1)-dimensional vector.
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3 Data

Ethereum Price Data. The Ethereum (ETH) price data used in this paper was obtained
from the Coinbase website. It is worth noting that unlike traditional assets, cryptocurrency
markets are open 24/7. Therefore, daily price data are available. The price data obtained was
from August 9, 2015 to July 25, 2021, a total of 2178 data points.

Figure 1: Candlestick Chart of ETH Daily Price in USD

Ethereum Return Series. We convert these price data into daily returns with

rt = ln

(
Pt

Pt−1

)
, (10)

where Pt are the daily closing prices. With this conversion, we are left with 2177 data points.

Figure 2: ETH Daily Log Return in Percentage

Inspecting the distribution of the return series, we obtain a kurtosis of 6.4172 indicating a
leptokurtic distribution for the returns. Figure 3 shows the density plot of the return. This
observation is in line with the results of Gyamerah (2019) wherein the return series of cryp-
tocurrencies are leptokurtic. Table 14 also presents a summary of the return series.
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Figure 3: Density Plot of Return

Mean Median Max Min Std. Dev.
0.36% 0.14% 43.27% -42.36% 0.0637

Table 1: Summary Statistics on Ethereum Return

4 Results and Discussion

Augmented Dickey-Fuller Test. Before fitting linear time series models, we performed
the Augmented Dickey-Fuller test on the return series. The results are as follows:

lag test statistic p-value
5 -18.5287 0.01
7 -15.9762 0.01

Table 2: Results of the Augmented Dickey-Fuller Test

Therefore, at α = 0.05, we reject the null hypothesis and the return series is stationary. Thus,
we can proceed with fitting to linear models.

ARMA Order Determination. To determine the order of the ARMA component, we use
the Box–Jenkins method. We plot the autocorrelation function (ACF), partial autocorrelation
function (PACF) in Figure 5, and the extended autocorrelation function (EACF) in Figure 4

AR/MA

0 1 2 3 4 5 6 7 8

0 o o x o o o o o o

1 x o x o o o o o o

2 o o x o o o o o o

3 x x x o o o o o o

4 x o x x o o o o o

5 x x x x o o o o o

Figure 4: EACF on Ethereum Return

Therefore, the possible models are ARMA(0, 0), AR(3), and MA(3).
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Figure 5: ACF and PACF on Ethereum Return

ARMA-IGARCH Model. Using the volatility model IGARCH(1, 1) with ϵt ∼ t distribu-
tion (due to leptokurtic distribution), along with the three possible models in the previous page,
we obtain the following results:

Model AIC HQIC MSE MAE
ARMA(0,0)-IGARCH(1,1) -3.1031 -3.0992 0.002963 0.040250

AR(3)-IGARCH(1,1) -3.1012 -3.0945 0.002966 0.040240
MA(3)-IGARCH(1,1) -3.1008 -3.0941 0.002966 0.040240

Table 3: Information Criterion and Forecast Errors on the ARMA-IGARCH Models

Note that the out-sample results was obtained when refitting every 7 days with a recursive window and

a forecast length of 365 days.

In the in-sample result, for both information criterion, the ARMA(0, 0)-IGARCH(1,1) model
produced the least value followed by the AR(3)-IGARCH(1,1) model. In the out-sample result,
the same model obtained the least MSE. Therefore, ARMA(0, 0)-IGARCH(1, 1) is the best
model out of the three. The optimal parameters for the model are as follows:

Parameter Estimate Std.Error p-value
ϕ0 0.001386 0.000815 0.089053
α0 0.000226 0.000053 0.000019
α1 0.250065 0.031720 0.000000
β1 0.749935 - -

Table 4: Optimal Parameters for ARMA(0,0)-IGARCH(1,1)

The parameters in Table 4 indicate the persistence of volatility in the return series with α1+β1 =
1 and a statistically significant value for α1. We also obtain a slightly positive mean ϕ0 although
not statistically significant. However, we do get a statistically significant value for α0.
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ARMA-EGARCH Model. Using the volatility model EGARCH(1, 1) with ϵt ∼ t distri-
bution (due to leptokurtic distribution), along with the three possible ARMA models, we obtain
the following results:

Model AIC HQIC MSE MAE
ARMA(0,0)-EGARCH(1,1) -3.1053 -3.0996 0.002965 0.040270

AR(3)-EGARCH(1,1) -3.1042 -3.0956 0.002969 0.040260
MA(3)-EGARCH(1,1) -3.1038 -3.0952 0.002969 0.040270

Table 5: Information Criterion and Forecast Errors on the ARMA-EGARCH Models

Note that the out-sample results was obtained when refitting every 7 days with a recursive window and

a forecast length of 365 days.

Similarly, in the in-sample result, for both information criterion, the ARMA(0, 0)-EGARCH(1,1)
model produced the least value. In the out-sample result, the same model obtained the least
MSE. Therefore, ARMA(0, 0)-EGARCH(1, 1) is the best model. The optimal parameters for
the model are as follows:

Parameter Estimate Std.Error p-value
ϕ0 0.001176 0.000831 0.156932
α0 -0.328102 0.075633 0.000014
β1 0.940888 0.013297 0.000000
θ 0.028942 0.023765 0.223287
γ 0.426877 0.050487 0.000000

Table 6: Optimal Parameters for ARMA(0,0)-EGARCH(1,1)

Table 6 shows that the model obtained a statistically significant positive value for γ indicating
that positive news have greater impact on the returns, similar with Naimy and Hayek (2018).
Additionally, it also shows a slightly positive value for the mean ϕ0 although not statistically
significant similar to the last model. However, we obtained a statistically significant negative
value for α0 which violates the constraints of the model.

In both linear models, the return series better fits a white noise series compared to an ARMA
process. The two models produced a mean slightly greater than zero although not statistically
significant. The volatility modeling component shows an almost similar forecasting performance.
However, the IGARCH(1,1) model is preferred since it does not violate any constraints on the
parameters.

F Test. After fitting linear time series models, we now fit the Ethereum daily return with
nonlinear time series models. First, we perform the F test to check against the null hypothesis
that the return series follows some AR process. The results are as follows:

AR order test statistic p-value
20 1.8672 0.01

Table 7: Results of the F test

Therefore, at α = 0.05, we reject the null hypothesis and the return series does not follow a
linear AR process. Thus, we can proceed with fitting nonlinear models to the series.
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Self-Exciting Threshold Autoregressive Model (SETAR). As shown in Figure 5,
the return series can be an AR(3) model. We compare two two-regime SETAR models: one
with 0 threshold and the other with nonzero threshold. We obtain the following results with
bootstrap method for 365 days forecasting:

Threshold AIC MSE MAE
0 -12030 0.002964 0.040230

-0.04297 -12063 0.002956 0.040210

Table 8: Information Criterion and Forecast Errors on the SETAR Models

In both in-sample and out-sample results, the second model with nonzero threshold performed
better than the first model with fixed 0 threshold. The optimal parameters for this model are
as follows:

Parameter Estimate Std.Error p-value
ϕ1,0 -0.013778 0.006868 0.044971
ϕ1,1 -0.201899 0.067079 0.002644
ϕ1,2 -0.235735 0.041989 0.000000
ϕ1,3 0.011203 0.043507 0.796810
ϕ2,0 0.002725 0.001580 0.084733
ϕ2,1 0.030573 0.029461 0.299506
ϕ2,2 0.091036 0.024440 0.000200
ϕ3,3 0.053924 0.024025 0.024901

Table 9: Optimal Parameters for SETAR Model with Nonzero Threshold

The parameter values in Table 9 indicate that a negative return less than the threshold value
-0.04297 tends to switch to a positive return due to the (relatively) larger negative coefficients
in the first regime ϕ1,1, ϕ1,2 which are both statistically significant. However, a return larger
than the threshold tends to takes a longer time to reduce to a negative value due to the smaller
magnitude in the coefficients of the second regime ϕ2,2, ϕ2,3 both of which are also statistically
significant.

Figure 6: Regime Switching Plot for SETAR Model with Nonzero Threshold

Figure 6 above shows that majority of the time, the return series is in the second regime (red)
when rt−1 is greater than the threshold value. We also notice that most of the large positive
returns are in the second regime while most of the large negative returns are in the first regime
indicating a clear distinction between the two regimes.
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Logistic Smooth Transition Autoregressive Model (LSTAR). As an improvement
to the last model, we fit the Ethereum return to a LSTAR model with AR(3). The results with
bootstrap method for 365 days forecasting are as follows:

AIC MSE MAE
-12059 0.002961 0.040477

Table 10: Information Criterion and Forecast Errors on the LSTAR Model

The MSE indicates a better forecasting performance compared to a two-regime SETAR model
with 0 threshold, but performs slightly worse compared to the same model with nonzero thresh-
old. The optimal parameters of this model are:

Parameter Estimate Std.Error p-value
ϕ1,0 -0.010573 0.009940 0.287502
ϕ1,1 -0.180616 0.080184 0.024290
ϕ1,2 -0.276519 0.051918 0.000000
ϕ1,3 0.019979 0.052458 0.703313
ϕ2,0 0.012845 0.010489 0.220688
ϕ2,1 0.219804 0.080862 0.006563
ϕ2,2 0.370215 0.058281 0.000000
ϕ2,3 0.031614 0.061053 0.604582
1/s 100.000003 53.003021 0.059203
∆ -0.054967 0.009241 0.000000

Table 11: Optimal Parameters for LSTAR Model

where ∆, s are the location and scale of the model. Similar to the SETAR model, Table 11
shows that the “threshold” of the LSTAR model ∆ is a negative value near zero which is also
statistically significant. ∆ can be seen as the threshold point where the weight of one regime
is greater than the other. Similar to the SETAR model, we also see statistically significant
negative parameter values for the first regime ϕ1,1, ϕ1,2. However, the LSTAR model has larger
and statistically significant positive parameters in the second regime ϕ2,1, ϕ2,2 that was not
present in the SETAR model.

Figure 7: Regime Switching Plot for LSTAR Model

Figure 7 above shows a balance between the two regimes. Compared to Figure 6, the LSTAR
model seems to have an equal distribution of large positive and large negative returns in both
regimes. This difference can be attributed to the dynamic shifting of weights of both regimes as
compared to having two constant AR models.
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Markov Switching Autoregressive (MSA) Model. For the last model, we fit another
regime switching model but with a stochastic scheme. Again, we use a 2-regime AR(3) process.
We obtain the following results:

BIC MSE MAE
-6558.16 0.003890 0.047288

Table 12: Information Criterion and Forecast Errors on the MSA Model

The MSE and MAE indicates that the Markov Switching Autoregressive Model performs poorly
compared to the SETAR and LSTAR model. Despite this, the MSE value is small enough to
make the model useful. The optimal parameters of the model are:

Parameter Estimate
ϕ1,0 -0.030332
ϕ1,1 0.249614
ϕ1,2 -0.025913
ϕ1,3 -0.015495
ϕ2,0 0.052308
ϕ2,1 0.364788
ϕ2,2 -0.003394
ϕ2,3 0.062573

Table 13: Optimal Parameters for MSA Model

with a Markov transition matrix and a matrix of limiting transition probabilities of

M =

[
0.982098 0.017902
0.147357 0.852643

]
, lim

p→∞
Mp =

[
0.891674 0.108326
0.891674 0.108326

]
. (11)

The Markov transition matrix in (11) indicates the presence of volatility clustering since the
probability of remaining in the same state is high and the first regime has a standard deviation
16% greater than the second regime. Figure 8 below shows that the first regime (shaded region)
has a larger volatility than the second regime. This result is similar to the results of Chappell
(2018). Unlike the two previous nonlinear models, the current model does not classify regimes
based on the signs of the return, rather it classify regimes based on volatility of the returns.
Moreover, the matrix of limiting transition probabilities indicate that in the long-run, almost
90% of the series will be in the first regime of higher volatility.

Figure 8: Regime Switching Plot for MSA Model
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Summary of Results. Table 14 presents a summary of the results of the five models in-
vestigated. Results show that out of the five models fitted, the SETAR model with nonzero
threshold performed the best in terms of forecast performance followed by the LSTAR model
while the MSA model performed the worse. The SETAR model is given by

rt =

{
−0.013778− 0.201899rt−1 − 0.235735rt−2 +0.011203rt−3 if rt−1 ≤ −0.04297,

0.002725 + 0.030573rt−1 + 0.091036rt−2 + 0.053924rt−3 if rt−1 > −0.04297.
(12)

Upon further inspection of the SETAR model, we see that it captures several characteristics on
the return series and price of Ethereum:

1. The model captures the asymmetry between positive and negative returns.
In line with the results of the ARMA(0,0)-EGARCH(1,1) model, positive returns are
more destabilizing than negative returns due to the difference in the magnitudes of the
coefficients in both regimes. Negative returns (less than the threshold) are followed by
positive returns on average due to the large magnitude of ϕ1,1, ϕ1,2.

2. The parameters of the model also reflects the overall uptrend of the value
of Ethereum. In line with the first observation, a large negative return less than the
threshold is immediately supported, causing a positive return in the next period. A large
positive return, however, is not immediately followed by a negative return indicating a
weak resistance. The net effect is an overall uptrend in the price data.

3. The model captures the leptokurtic distribution of the returns. The model was
able to empirically forecast large positive and negative returns. The first regime captures
most of the large negative returns while the second regime captures the large positive
returns.

Model AIC BIC HQIC MSE MAE
ARMA(0,0)-IGARCH(1,1) -3.1031 - -3.0992 0.002963 0.040250
ARMA(0,0)-EGARCH(1,1) -3.1053 - -3.0996 0.002965 0.040270

SETAR (γ ̸= 0) -12063 - - 0.002956 0.040210
LSTAR -12059 - - 0.002961 0.040477
MSA - -6558.16 - 0.003890 0.047288

Table 14: Summary of Models

5 Conclusion

This paper attempted to model the Ethereum return series with five linear and nonlinear models.
Using the mean squared error (MSE) as the measure of forecast performance, we found that the
Self-Exciting Threshold Autoregressive (SETAR) model performed the best out of the models
investigated. The model was able to forecast 1 year of returns with an MSE of 0.002956, an
improvement from the MSE obtained by Udom (2019). The model also captures several key
characteristics of the Ethereum return series. However, further improvements to the current
model are still needed. The current model exhibits an ARCH effect according to the McLeod-Li
test. Future studies can incorporate volatility modeling to the current model to capture the
volatile nature of cryptocurrency returns. With this, the new model might be able to provide a
better forecasting performance.

12



References

Chappell, D. (2018, September). Regime Heteroskedasticity in Bitcoin: A Comparison
of Markov Switching Models [MPRA Paper]. Retrieved 2021-07-26, from https://

mpra.ub.uni-muenchen.de/90682/

Conway, L. (2021, June). The 10 most important cryptocurrencies other than bitcoin. Re-
trieved 2021-07-26, from https://www.investopedia.com/tech/most-important

-cryptocurrencies-other-than-bitcoin/

Frankenfield, J. (2021a, May). Cryptocurrency. Retrieved 2021-07-26, from https://

www.investopedia.com/terms/c/cryptocurrency.asp

Frankenfield, J. (2021b, July). Ethereum. Retrieved 2021-07-26, from https://www

.investopedia.com/terms/e/ethereum.asp

Gyamerah, S. A. (2019). Modelling the Volatility of Bitcoin Returns Using GARCH
Models. Quantitative Finance and Economics , 3 (4), 739–753. Retrieved 2021-
07-26, from http://www.aimspress.com/rticle/doi/10.3934/QFE.2019.4.739

doi: DOI: 10.3934/QFE.2019.4.739
Naimy, V. Y., & Hayek, M. R. (2018). Modelling and predicting the Bitcoin volatility using

GARCH models. International Journal of Mathematical Modelling and Numerical
Optimisation, 8 (3), 197. Retrieved 2021-07-26, from http://www.inderscience

.com/link.php?id=88994 doi: DOI: 10.1504/IJMMNO.2018.088994
PricewaterhouseCoopers. (n.d.). Making sense of bitcoin, cryptocurrency and blockchain.

Retrieved 2021-07-26, from https://www.pwc.com/us/en/industries/financial

-services/fintech/bitcoin-blockchain-cryptocurrency.html

Radovanov, B., Marcikić, A., & Gvozdenović, N. (2018, November). A Time Se-
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Appendix: R Codes
Load the libraries.

library(quantmod)
library(TSA)
library(tseries)
library(forecast)
library(rugarch)
library(tsDyn)
library(MSwM)
library(NHMSAR)
library(nonlinearTseries)
library(xts)
library(ggplot2)
library(normtest)
library(e1071)

Load the data.
# Get ETH-USD data
ETH=read.csv("ETHUSD.csv")
dates=as.character(ETH$Date)
ETH$Date=as.POSIXct(dates,format="%m-%d-%Y")

# Plot candlestick
ggplot(ETH,aes(x = Date, y = Close)) +

geom_candlestick(aes(open = Open, close = Close, high = High, low = Low)) +
labs(title = "", x = "", y = "") + theme_tq()

# Get closing prices
close=ETH[,2]

# Get daily return (close to close)
ret=na.omit(diff(log(close)))

# Cut ETH to fit return
ETH=ETH[2:dim(ETH)[1],1:dim(ETH)[2]]
ETH$Return=ret

# Plot Returns
ggplot(ETH,aes(x = Date, y = 100*Return)) +

geom_line() +
labs(title = "", x = "", y = "") + theme_tq()

# Convert ETH into xts
ETH$Date=NULL
ETH=xts(ETH, as.POSIXct(dates[2:length(dates)], format="%m-%d-%Y"))

# Check for leptokurtic
kurtosis.norm.test(ret)
plot(density(ret))
kurtosis(ret)
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Check ARMA order.
adf=adf.test(ret,k=7)
adf
eacf(ret)

ARMA-IGARCH(1,1) order.
spec1=ugarchspec(variance.model=list(model="iGARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),distribution.model="std")
mod1=ugarchfit(spec=spec1,data=ret)
mod1
roll1=ugarchroll(spec=spec1,data=ret,n.ahead=1,forecast.length=365,

refit.every=7,refit.window="recursive")
report(roll1,type="fpm")

ARMA-EGARCH(1,1) order.
spec2=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),distribution.model="std")
mod2=ugarchfit(spec=spec2,data=ret)
mod2
roll2=ugarchroll(spec=spec2,data=ret,n.ahead=1,forecast.length=365,

refit.every=7,refit.window="recursive")
report(roll2,type="fpm")

Nonlinearity test.
test=nonlinearityTest(ret)
test

Get training and test dataset.
ret.test=ts(ret[1813:2177],frequency=365.25,start=c(2020,7,26))
ret.train=ts(ret[1:1812],frequency=365.25,start=c(2020,7,26))

ret.arr.train=array(ret.train,c(length(ret.train),1,1))
ret.arr.test=array(ret.test,c(length(ret.test),1,1))

SETAR Model.
mod3.setar=setar(ret,m=3)
summary(mod3.setar)
mod3.forecast=setar(ret.train,m=3)
pred3=predict(mod3.forecast,type="bootstrap",n.ahead=365)$pred
pred3=ts(pred3,frequency=365.25,start=c(2020,7,26))
accuracy(pred3,ret.test)

LSTAR Model.
mod4.lstar=lstar(ret,m=3,th=1)
summary(mod4.lstar)
mod4.forecast=lstar(ret.train,m=3,th=1)
pred4=predict(mod4.forecast,type="bootstrap",n.ahead=365)$pred
pred4=ts(pred4,frequency=365.25,start=c(2020,7,26))
accuracy(pred4,ret.test)
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MSA Model.
ret.arr=array(ret,c(length(ret),1,1))
theta.init=init.theta.MSAR(ret.arr,M=2,order=3)
mod5=fit.MSAR(ret.arr,theta.init)
summary(mod5)
mod5$BIC
regimes.plot.MSAR(mod5,ret.arr)
theta.init

theta.init=init.theta.MSAR(ret.arr.train,M=2,order=3)
mod5.forecast=fit.MSAR(ret.arr.train,theta.init)
summary(mod5.forecast)
pred5=prediction.MSAR(data=ret.arr.test,theta.init,ex=1:1)
mse=mean((ret.arr.test-pred5$y.p)ˆ2)
mae=mean(abs(ret.arr.test-pred5$y.p))
mse
mae
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